
Control Room Accelerator Physics

Day 1
Introduction to Open XAL

Overview

2

Open XAL is an extensible application
framework for developing accelerator
physics applications, scripts and services.	

Collaboration

3

Open XAL is a collaboration among SNS,
CSNS, ESS, GANIL, TRIUMF and
FRIB.	

Official Website

4

http://xaldev.sourceforge.net

Features
• Open Source collaboration with dozens of developers
across several sites

• Pure Java for cross platform development and
deployment

• Application Framework for rapidly developing modern
applications

• Toolbox of Java packages
• Collection of applications (over four dozen) and
services

• EPICS Channel Access support
• Ant based build system independent of IDE

5

Development Requirements

•  Java J2SE 7 with JDK
• Git 1.7.5
• Ant 1.8

6

6

Runtime Requirements

•  Java J2SE 7
•  JRuby 1.6 (for JRuby scripts)
•  Jython 2.1 (for Jython scripts)
• EPICS Channel Access client libraries (optional -

native Channel Access)

7

7

Reference Release Source Code
Anonymous Access

8

git clone http://git.code.sf.net/p/xaldev/
openxal

Raw / IDE Independent

git clone http://git.code.sf.net/p/xaldev/
project.eclipse

Eclipse Configured

git clone http://git.code.sf.net/p/xaldev/
project.xcode

Xcode Configured

Primary Constructs

9

Construct Description

Core Common Open XAL library

Extension Optional addition to the Core, Core has
no dependency

Plugin One of each type of plugin is required by
Core at runtime

Service Runs continuously, headless, includes
extension

Application Launched by user, Graphical Interface

Script JRuby or Jython based script which may
have an graphical interface

Core Overview
• Common packages shared across sites

•  Online Accelerator Physics Model
•  Accelerator Object Graph
•  Channel Access abstraction
•  Database abstraction
•  Messaging
•  Concurrency Dispatch
•  Math packages

10

10

Project Layout - Core

11

core

build.xml

extensions

config

build

apps

plugins

scripts

services

test

build.xml

resources

lib

src

test

Ant Build File

External Libraries

Images, properties,
etc.

Java Source Code

JUnit Tests

Extension Overview
•  Mechanism to add capabilities to Open XAL without

changing the core
•  May depend on core, extensions and plugins
•  Core has no dependency on extensions
•  Apps and Services may depend on extensions
•  May include libraries, resources and source code

•  Included libraries (e.g. jmdns) should be completely wrapped by
their extension

•  Two types
•  Pure
•  Service

12

Pure Extension
• Placed under top level extensions directory
• Examples: application (framework), bricks (runtime), fit,

scan, solver, service (framework), widget
• Package prefix: xal.extension.<extension-name>

13

13

Service Extension
• Associated with a service
• A service’s protocol is an extension
• A service’s other supporting code may be an extension
• Placed at extensions directory under its service’s

directory
• Package prefix: xal.service.<service-name>
• Example: pvlogger

14

14

Project Layout - Pure Extensions

15

extensions

core

build.xml

config

build

apps

plugins

scripts

services

test

resources

src

application

build.xml

bricks

extlatgen

fit

orbit

scan

service

Plugin Overview
•  Mechanism to provide custom implementation for some

abstracted core components (e.g. Channel)
•  May depend on core, extensions and plugins
•  Core has runtime only dependency on plugin families
•  Apps and Services may depend directly on plugins
•  May include libraries, resources and source code

•  Libraries should be completely wrapped (e.g. jca)

•  Two types
•  Solitary
•  Family Member

16

Solitary Plugin
• Only one plugin for a given family may be included
• Core references a plugin family class to be implemented

by just one plugin (e.g. channel factory)
•  Two source code package prefixes to supply (abstract and

implementation)
•  xal.<core package tree>
•  xal.plugin.<plugin-name>

• Example JCA Plugin

17

17

Family Member Plugin
• Multiple plugins for a given family may be included
• Core references a plugin family indirectly through

configuration files (e.g. database configuration)
• One source code package prefix to supply

•  xal.plugin.<plugin-name>

• Database Adaptor Plugins
•  oracle, mysql

18

18

Project Layout - Plugins

19

plugins

extensions

core

build.xml

config

build

apps

scripts

services

test Readme.html

jca

mysql

oracle

xal

ca

plugin

src

lib

Services Overview
• Headless executable
• Runs 24/7
• Supports multiple clients via remote messages using the

service framework

20

20

Project Layout - Services

21

services

plugins

extensions

core

build.xml

config

build

apps

scripts

test

build.xml

pvlogger

mpstool

common.xml

build.xml

extension

src

Applications Overview
• Executable with a user interface
• Built upon the application framework
•  Inherits a common extensible menubar
• Shares a common look and feel
• Model - View - Controller architecture

22

22

Project Layout - Applications

23

apps

services

plugins

extensions

core

build.xml

config

build

scripts

test

build.xml

bricks

dbbrowser

common.xml

build.xml

resources

src

extlatgenerator

Scripts Overview
•  JRuby or Jython Script
• May have a graphical user interface
• Allows for rapid development and testing

24

24

Project Layout - Scripts

25

scripts

apps

services

plugins

extensions

core

build.xml

config

build

test

build.xml

waveform_
monitor

gui.bricks

waveform-
monitor.rb

Default Build Phases

26

Core
Extensions
Service Extensions
Plugins

Service

Application

...

...

Build Directory Hierarchy

27

Build dist

doc

intermediates

products

apps

lib

scripts

services

Build Options
• You can build everything at the top level by simply typing:

ant
• You can get the available build options by typing: ant help
• Each absolutely independent component has its own

build file
•  At component root, simply type: ant
•  You can build an individual application
•  You cannot build an individual extension

28

28

29

> ant help !

Buildfile: /Users/t6p/Projects/OpenXAL/Development/Base/openxal/build.xmlhelp: [echo] Build the XAL project [echo] Usage: ant
[ant options] target1 [target2 | target3 | ...] [echo] [echo] where target(s) can be: [echo]
help Print this message. [echo] all Build the XAL core, services and
applications. Copy scripts to the build directory. [echo] apps Compile the applications and assemble
the jar products. [echo] clean Clean compiled classes and build products [echo]
core Compile the core XAL classes and assemble the jar products. [echo] doc
Build the javadoc for the core, extensions and plugins. [echo] info Post build information. [echo]
install Install all build products which allow batch installation. [echo] install-apps
Install all apps which allow batch installation. [echo] install-doc Install the javadoc. [echo]
install-scripts Install all scripts. [echo] install-services Install all services which allow batch
installation. [echo] install-shared Install the core. [echo] jar-resources Archive
resources for the core plus all batch enabled applications and services. [echo] purge-build Purge all build
products. [echo] purge-install Purge all installed products. [echo] purge-intermediates Purge
the build intermediates. !

Top Level Build Options

30

 [echo] purge-shared-intermediates . Purge the shared build intermediates. [echo] run-tests Build
and run unit tests. [echo] scripts Copy scripts to the build directory. [echo]
services Compile the services and assemble the jar products. [echo] shared Build the
shared library including the core and any extensions and plugins. [echo] standalone-apps Build the applications
which allow batch building and assemble the jar products as standalone applications. [echo] standalone-services Build
the services which allow batch building and assemble the jar products as standalone services. !

Top Level Build Options Continued

